apache_beam.ml.gcp.cloud_dlp module¶
PTransforms that implement Google Cloud Data Loss Prevention
functionality.
-
class
apache_beam.ml.gcp.cloud_dlp.MaskDetectedDetails(project=None, deidentification_template_name=None, deidentification_config=None, inspection_template_name=None, inspection_config=None, timeout=None)[source]¶ Bases:
apache_beam.transforms.ptransform.PTransformScrubs sensitive information detected in text. The
PTransformreturns aPCollectionofstrExample usage:pipeline | MaskDetectedDetails(project='example-gcp-project', deidentification_config={ 'info_type_transformations: { 'transformations': [{ 'primitive_transformation': { 'character_mask_config': { 'masking_character': '#' } } }] } }, inspection_config={'info_types': [{'name': 'EMAIL_ADDRESS'}]})
Initializes a
MaskDetectedDetailstransform.Parameters: - project – Optional. GCP project name in which inspection will be performed
- deidentification_template_name (str) – Either this or deidentification_config required. Name of deidentification template to be used on detected sensitive information instances in text.
- deidentification_config – (
Union[dict, google.cloud.dlp_v2.types.DeidentifyConfig]): Configuration for the de-identification of the content item. If both template name and config are supplied, config is more important. - inspection_template_name (str) – This or inspection_config required. Name of inspection template to be used to detect sensitive data in text.
- inspection_config – (
Union[dict, google.cloud.dlp_v2.types.InspectConfig]): Configuration for the inspector used to detect sensitive data in text. If both template name and config are supplied, config takes precedence. - timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
-
annotations() → Dict[str, Union[bytes, str, google.protobuf.message.Message]]¶
-
default_label()¶
-
default_type_hints()¶
-
display_data()¶ Returns the display data associated to a pipeline component.
It should be reimplemented in pipeline components that wish to have static display data.
Returns: A dictionary containing key:valuepairs. The value might be an integer, float or string value; aDisplayDataItemfor values that have more data (e.g. short value, label, url); or aHasDisplayDatainstance that has more display data that should be picked up. For example:{ 'key1': 'string_value', 'key2': 1234, 'key3': 3.14159265, 'key4': DisplayDataItem('apache.org', url='http://apache.org'), 'key5': subComponent }
Return type: Dict[str, Any]
-
classmethod
from_runner_api(proto, context)¶
-
get_type_hints()¶ Gets and/or initializes type hints for this object.
If type hints have not been set, attempts to initialize type hints in this order: - Using self.default_type_hints(). - Using self.__class__ type hints.
-
get_windowing(inputs)¶ Returns the window function to be associated with transform’s output.
By default most transforms just return the windowing function associated with the input PCollection (or the first input if several).
-
infer_output_type(unused_input_type)¶
-
label¶
-
pipeline= None¶
-
classmethod
register_urn(urn, parameter_type, constructor=None)¶
-
runner_api_requires_keyed_input()¶
-
side_inputs= ()¶
-
to_runner_api(context, has_parts=False, **extra_kwargs)¶
-
to_runner_api_parameter(unused_context)¶
-
to_runner_api_pickled(unused_context)¶
-
type_check_inputs(pvalueish)¶
-
type_check_inputs_or_outputs(pvalueish, input_or_output)¶
-
type_check_outputs(pvalueish)¶
-
with_input_types(input_type_hint)¶ Annotates the input type of a
PTransformwith a type-hint.Parameters: input_type_hint (type) – An instance of an allowed built-in type, a custom class, or an instance of a TypeConstraint.Raises: TypeError– If input_type_hint is not a valid type-hint. Seeapache_beam.typehints.typehints.validate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform
-
with_output_types(type_hint)¶ Annotates the output type of a
PTransformwith a type-hint.Parameters: type_hint (type) – An instance of an allowed built-in type, a custom class, or a TypeConstraint.Raises: TypeError– If type_hint is not a valid type-hint. Seevalidate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform
-
class
apache_beam.ml.gcp.cloud_dlp.InspectForDetails(project=None, inspection_template_name=None, inspection_config=None, timeout=None)[source]¶ Bases:
apache_beam.transforms.ptransform.PTransformInspects input text for sensitive information. the
PTransformreturns aPCollectionofList[google.cloud.dlp_v2.proto.dlp_pb2.Finding]Example usage:pipeline | InspectForDetails(project='example-gcp-project', inspection_config={'info_types': [{'name': 'EMAIL_ADDRESS'}]})
Initializes a
InspectForDetailstransform.Parameters: - project – Optional. GCP project name in which inspection will be performed
- inspection_template_name (str) – This or inspection_config required. Name of inspection template to be used to detect sensitive data in text.
- inspection_config – (
Union[dict, google.cloud.dlp_v2.types.InspectConfig]): Configuration for the inspector used to detect sensitive data in text. If both template name and config are supplied, config takes precedence. - timeout (float) – Optional. The amount of time, in seconds, to wait for the request to complete.
-
annotations() → Dict[str, Union[bytes, str, google.protobuf.message.Message]]¶
-
default_label()¶
-
default_type_hints()¶
-
display_data()¶ Returns the display data associated to a pipeline component.
It should be reimplemented in pipeline components that wish to have static display data.
Returns: A dictionary containing key:valuepairs. The value might be an integer, float or string value; aDisplayDataItemfor values that have more data (e.g. short value, label, url); or aHasDisplayDatainstance that has more display data that should be picked up. For example:{ 'key1': 'string_value', 'key2': 1234, 'key3': 3.14159265, 'key4': DisplayDataItem('apache.org', url='http://apache.org'), 'key5': subComponent }
Return type: Dict[str, Any]
-
classmethod
from_runner_api(proto, context)¶
-
get_type_hints()¶ Gets and/or initializes type hints for this object.
If type hints have not been set, attempts to initialize type hints in this order: - Using self.default_type_hints(). - Using self.__class__ type hints.
-
get_windowing(inputs)¶ Returns the window function to be associated with transform’s output.
By default most transforms just return the windowing function associated with the input PCollection (or the first input if several).
-
infer_output_type(unused_input_type)¶
-
label¶
-
pipeline= None¶
-
classmethod
register_urn(urn, parameter_type, constructor=None)¶
-
runner_api_requires_keyed_input()¶
-
side_inputs= ()¶
-
to_runner_api(context, has_parts=False, **extra_kwargs)¶
-
to_runner_api_parameter(unused_context)¶
-
to_runner_api_pickled(unused_context)¶
-
type_check_inputs(pvalueish)¶
-
type_check_inputs_or_outputs(pvalueish, input_or_output)¶
-
type_check_outputs(pvalueish)¶
-
with_input_types(input_type_hint)¶ Annotates the input type of a
PTransformwith a type-hint.Parameters: input_type_hint (type) – An instance of an allowed built-in type, a custom class, or an instance of a TypeConstraint.Raises: TypeError– If input_type_hint is not a valid type-hint. Seeapache_beam.typehints.typehints.validate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform
-
with_output_types(type_hint)¶ Annotates the output type of a
PTransformwith a type-hint.Parameters: type_hint (type) – An instance of an allowed built-in type, a custom class, or a TypeConstraint.Raises: TypeError– If type_hint is not a valid type-hint. Seevalidate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform