apache_beam.io.gcp.bigtableio module¶
BigTable connector
This module implements writing to BigTable tables. The default mode is to set row data to write to BigTable tables. The syntax supported is described here: https://cloud.google.com/bigtable/docs/quickstart-cbt
BigTable connector can be used as main outputs. A main output (common case) is expected to be massive and will be split into manageable chunks and processed in parallel. In the example below we created a list of rows then passed to the GeneratedDirectRows DoFn to set the Cells and then we call the BigTableWriteFn to insert those generated rows in the table.
- main_table = (p
beam.Create(self._generate())WriteToBigTable(project_id, instance_id, table_id))
-
class
apache_beam.io.gcp.bigtableio.WriteToBigTable(project_id=None, instance_id=None, table_id=None)[source]¶ Bases:
apache_beam.transforms.ptransform.PTransformA transform to write to the Bigtable Table.
A PTransform that write a list of DirectRow into the Bigtable Table
The PTransform to access the Bigtable Write connector :param project_id: GCP Project of to write the Rows :type project_id: str :param instance_id: GCP Instance to write the Rows :type instance_id: str :param table_id: GCP Table to write the DirectRows :type table_id: str
-
annotations() → Dict[str, Union[bytes, str, google.protobuf.message.Message]]¶
-
default_label()¶
-
default_type_hints()¶
-
display_data()¶ Returns the display data associated to a pipeline component.
It should be reimplemented in pipeline components that wish to have static display data.
Returns: A dictionary containing key:valuepairs. The value might be an integer, float or string value; aDisplayDataItemfor values that have more data (e.g. short value, label, url); or aHasDisplayDatainstance that has more display data that should be picked up. For example:{ 'key1': 'string_value', 'key2': 1234, 'key3': 3.14159265, 'key4': DisplayDataItem('apache.org', url='http://apache.org'), 'key5': subComponent }
Return type: Dict[str, Any]
-
classmethod
from_runner_api(proto, context)¶
-
get_type_hints()¶ Gets and/or initializes type hints for this object.
If type hints have not been set, attempts to initialize type hints in this order: - Using self.default_type_hints(). - Using self.__class__ type hints.
-
get_windowing(inputs)¶ Returns the window function to be associated with transform’s output.
By default most transforms just return the windowing function associated with the input PCollection (or the first input if several).
-
infer_output_type(unused_input_type)¶
-
label¶
-
pipeline= None¶
-
classmethod
register_urn(urn, parameter_type, constructor=None)¶
-
runner_api_requires_keyed_input()¶
-
side_inputs= ()¶
-
to_runner_api(context, has_parts=False, **extra_kwargs)¶
-
to_runner_api_parameter(unused_context)¶
-
to_runner_api_pickled(unused_context)¶
-
type_check_inputs(pvalueish)¶
-
type_check_inputs_or_outputs(pvalueish, input_or_output)¶
-
type_check_outputs(pvalueish)¶
-
with_input_types(input_type_hint)¶ Annotates the input type of a
PTransformwith a type-hint.Parameters: input_type_hint (type) – An instance of an allowed built-in type, a custom class, or an instance of a TypeConstraint.Raises: TypeError– If input_type_hint is not a valid type-hint. Seeapache_beam.typehints.typehints.validate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform
-
with_output_types(type_hint)¶ Annotates the output type of a
PTransformwith a type-hint.Parameters: type_hint (type) – An instance of an allowed built-in type, a custom class, or a TypeConstraint.Raises: TypeError– If type_hint is not a valid type-hint. Seevalidate_composite_type_param()for further details.Returns: A reference to the instance of this particular PTransformobject. This allows chaining type-hinting related methods.Return type: PTransform
-