apache_beam.dataframe.schemas module¶
Utilities for relating schema-aware PCollections and dataframe transforms.
Imposes a mapping between native Python typings (specifically those compatible
with apache_beam.typehints.schemas
), and common pandas dtypes:
pandas dtype Python typing
np.int{8,16,32,64} <-----> np.int{8,16,32,64}*
pd.Int{8,16,32,64}Dtype <-----> Optional[np.int{8,16,32,64}]*
np.float{32,64} <-----> Optional[np.float{32,64}]
\--- np.float{32,64}
Not supported <------ Optional[bytes]
np.bool <-----> np.bool
* int, float, bool are treated the same as np.int64, np.float64, np.bool
Any unknown or unsupported types are treated as Any
and shunted to
np.object
:
np.object <-----> Any
bytes, unicode strings and nullable Booleans are handled differently when using
pandas 0.x vs. 1.x. pandas 0.x has no mapping for these types, so they are
shunted to np.object
.
pandas 1.x Only:
np.dtype('S') <-----> bytes
pd.BooleanDType() <-----> Optional[bool]
pd.StringDType() <-----> Optional[str]
\--- str
Pandas does not support hierarchical data natively. Currently, all structured
types (Sequence
, Mapping
, nested NamedTuple
types), are
shunted to np.object
like all other unknown types. In the future these
types may be given special consideration.
-
class
apache_beam.dataframe.schemas.
BatchRowsAsDataFrame
(*args, proxy=None, **kwargs)[source]¶ Bases:
apache_beam.transforms.ptransform.PTransform
A transform that batches schema-aware PCollection elements into DataFrames
Batching parameters are inherited from
BatchElements
.-
annotations
() → Dict[str, Union[bytes, str, google.protobuf.message.Message]]¶
-
default_label
()¶
-
default_type_hints
()¶
-
display_data
()¶ Returns the display data associated to a pipeline component.
It should be reimplemented in pipeline components that wish to have static display data.
Returns: A dictionary containing key:value
pairs. The value might be an integer, float or string value; aDisplayDataItem
for values that have more data (e.g. short value, label, url); or aHasDisplayData
instance that has more display data that should be picked up. For example:{ 'key1': 'string_value', 'key2': 1234, 'key3': 3.14159265, 'key4': DisplayDataItem('apache.org', url='http://apache.org'), 'key5': subComponent }
Return type: Dict[str, Any]
-
classmethod
from_runner_api
(proto, context)¶
-
get_type_hints
()¶ Gets and/or initializes type hints for this object.
If type hints have not been set, attempts to initialize type hints in this order: - Using self.default_type_hints(). - Using self.__class__ type hints.
-
get_windowing
(inputs)¶ Returns the window function to be associated with transform’s output.
By default most transforms just return the windowing function associated with the input PCollection (or the first input if several).
-
infer_output_type
(unused_input_type)¶
-
label
¶
-
pipeline
= None¶
-
classmethod
register_urn
(urn, parameter_type, constructor=None)¶
-
runner_api_requires_keyed_input
()¶
-
side_inputs
= ()¶
-
to_runner_api
(context, has_parts=False, **extra_kwargs)¶
-
to_runner_api_parameter
(unused_context)¶
-
to_runner_api_pickled
(unused_context)¶
-
type_check_inputs
(pvalueish)¶
-
type_check_inputs_or_outputs
(pvalueish, input_or_output)¶
-
type_check_outputs
(pvalueish)¶
-
with_input_types
(input_type_hint)¶ Annotates the input type of a
PTransform
with a type-hint.Parameters: input_type_hint (type) – An instance of an allowed built-in type, a custom class, or an instance of a TypeConstraint
.Raises: TypeError
– If input_type_hint is not a valid type-hint. Seeapache_beam.typehints.typehints.validate_composite_type_param()
for further details.Returns: A reference to the instance of this particular PTransform
object. This allows chaining type-hinting related methods.Return type: PTransform
-
with_output_types
(type_hint)¶ Annotates the output type of a
PTransform
with a type-hint.Parameters: type_hint (type) – An instance of an allowed built-in type, a custom class, or a TypeConstraint
.Raises: TypeError
– If type_hint is not a valid type-hint. Seevalidate_composite_type_param()
for further details.Returns: A reference to the instance of this particular PTransform
object. This allows chaining type-hinting related methods.Return type: PTransform
-
-
apache_beam.dataframe.schemas.
generate_proxy
(element_type)[source]¶ Generate a proxy pandas object for the given PCollection element_type.
Currently only supports generating a DataFrame proxy from a schema-aware PCollection or a Series proxy from a primitively typed PCollection.
-
apache_beam.dataframe.schemas.
element_type_from_dataframe
(proxy, include_indexes=False)[source]¶ Generate an element_type for an element-wise PCollection from a proxy pandas object. Currently only supports converting the element_type for a schema-aware PCollection to a proxy DataFrame.
Currently only supports generating a DataFrame proxy from a schema-aware PCollection.
-
class
apache_beam.dataframe.schemas.
UnbatchPandas
(proxy, include_indexes=False)[source]¶ Bases:
apache_beam.transforms.ptransform.PTransform
A transform that explodes a PCollection of DataFrame or Series. DataFrame is converterd to a schema-aware PCollection, while Series is converted to its underlying type.
Parameters: include_indexes – (optional, default: False) When unbatching a DataFrame if include_indexes=True, attempt to include index columns in the output schema for expanded DataFrames. Raises an error if any of the index levels are unnamed (name=None), or if any of the names are not unique among all column and index names. -
annotations
() → Dict[str, Union[bytes, str, google.protobuf.message.Message]]¶
-
default_label
()¶
-
default_type_hints
()¶
-
display_data
()¶ Returns the display data associated to a pipeline component.
It should be reimplemented in pipeline components that wish to have static display data.
Returns: A dictionary containing key:value
pairs. The value might be an integer, float or string value; aDisplayDataItem
for values that have more data (e.g. short value, label, url); or aHasDisplayData
instance that has more display data that should be picked up. For example:{ 'key1': 'string_value', 'key2': 1234, 'key3': 3.14159265, 'key4': DisplayDataItem('apache.org', url='http://apache.org'), 'key5': subComponent }
Return type: Dict[str, Any]
-
classmethod
from_runner_api
(proto, context)¶
-
get_type_hints
()¶ Gets and/or initializes type hints for this object.
If type hints have not been set, attempts to initialize type hints in this order: - Using self.default_type_hints(). - Using self.__class__ type hints.
-
get_windowing
(inputs)¶ Returns the window function to be associated with transform’s output.
By default most transforms just return the windowing function associated with the input PCollection (or the first input if several).
-
infer_output_type
(unused_input_type)¶
-
label
¶
-
pipeline
= None¶
-
classmethod
register_urn
(urn, parameter_type, constructor=None)¶
-
runner_api_requires_keyed_input
()¶
-
side_inputs
= ()¶
-
to_runner_api
(context, has_parts=False, **extra_kwargs)¶
-
to_runner_api_parameter
(unused_context)¶
-
to_runner_api_pickled
(unused_context)¶
-
type_check_inputs
(pvalueish)¶
-
type_check_inputs_or_outputs
(pvalueish, input_or_output)¶
-
type_check_outputs
(pvalueish)¶
-
with_input_types
(input_type_hint)¶ Annotates the input type of a
PTransform
with a type-hint.Parameters: input_type_hint (type) – An instance of an allowed built-in type, a custom class, or an instance of a TypeConstraint
.Raises: TypeError
– If input_type_hint is not a valid type-hint. Seeapache_beam.typehints.typehints.validate_composite_type_param()
for further details.Returns: A reference to the instance of this particular PTransform
object. This allows chaining type-hinting related methods.Return type: PTransform
-
with_output_types
(type_hint)¶ Annotates the output type of a
PTransform
with a type-hint.Parameters: type_hint (type) – An instance of an allowed built-in type, a custom class, or a TypeConstraint
.Raises: TypeError
– If type_hint is not a valid type-hint. Seevalidate_composite_type_param()
for further details.Returns: A reference to the instance of this particular PTransform
object. This allows chaining type-hinting related methods.Return type: PTransform
-