apache_beam.coders.row_coder module

class apache_beam.coders.row_coder.RowCoder(schema)[source]

Bases: apache_beam.coders.coders.FastCoder

Coder for typing.NamedTuple instances.

Implements the beam:coder:row:v1 standard coder spec.

Initializes a RowCoder.

Parameters:schema (apache_beam.portability.api.schema_pb2.Schema) – The protobuf representation of the schema of the data that the RowCoder will be used to encode/decode.
is_deterministic()[source]
to_type_hint()[source]
to_runner_api_parameter(unused_context)[source]
static from_runner_api_parameter(schema, components, unused_context)[source]
static from_type_hint(type_hint, registry)[source]
static from_payload(payload)[source]
as_cloud_object(coders_context=None)

For internal use only; no backwards-compatibility guarantees.

Returns Google Cloud Dataflow API description of this coder.

as_deterministic_coder(step_label, error_message=None)

Returns a deterministic version of self, if possible.

Otherwise raises a value error.

decode(encoded)

Decodes the given byte string into the corresponding object.

decode_nested(encoded)

Uses the underlying implementation to decode in nested format.

encode(value)

Encodes the given object into a byte string.

encode_nested(value)

Uses the underlying implementation to encode in nested format.

estimate_size(value)
classmethod from_runner_api(coder_proto, context)

Converts from an FunctionSpec to a Fn object.

Prefer registering a urn with its parameter type and constructor.

get_impl()

For internal use only; no backwards-compatibility guarantees.

Returns the CoderImpl backing this Coder.

is_kv_coder()
key_coder()
static register_structured_urn(urn, cls)

Register a coder that’s completely defined by its urn and its component(s), if any, which are passed to construct the instance.

classmethod register_urn(urn, parameter_type, fn=None)

Registers a urn with a constructor.

For example, if ‘beam:fn:foo’ had parameter type FooPayload, one could write RunnerApiFn.register_urn(‘bean:fn:foo’, FooPayload, foo_from_proto) where foo_from_proto took as arguments a FooPayload and a PipelineContext. This function can also be used as a decorator rather than passing the callable in as the final parameter.

A corresponding to_runner_api_parameter method would be expected that returns the tuple (‘beam:fn:foo’, FooPayload)

to_runner_api(context)
value_coder()